169 research outputs found

    Quantum Phase Transitions and Matrix Product States in Spin Ladders

    Full text link
    We investigate quantum phase transitions in ladders of spin 1/2 particles by engineering suitable matrix product states for these ladders. We take into account both discrete and continuous symmetries and provide general classes of such models. We also study the behavior of entanglement of different neighboring sites near the transition point and show that quantum phase transitions in these systems are accompanied by divergences in derivatives of entanglement.Comment: 20 pages, 6 figures, essential changes (i.e derivation of the Hamiltonian), Revte

    Matrix product states and exactly solvable spin 1/2 Heisenberg chains with nearest neighbor interactions

    Full text link
    Using the matrix product formalism, we introduce a two parameter family of exactly solvable xyzxyz spin 1/2 Heisenberg chains in magnetic field (with nearest neighbor interactions) and calculate the ground state and correlation functions in compact form. The ground state has a very interesting property: all the pairs of spins are equally entangled with each other. Therefore it is possible to engineer long-range entanglement in experimentally realizable spin systems on the one hand and study more closely quantum phase transition in such systems on the other.Comment: 4 pages, RevTex, references added, improved presentation, typos fixe

    A new family of matrix product states with Dzyaloshinski-Moriya interactions

    Full text link
    We define a new family of matrix product states which are exact ground states of spin 1/2 Hamiltonians on one dimensional lattices. This class of Hamiltonians contain both Heisenberg and Dzyaloshinskii-Moriya interactions but at specified and not arbitrary couplings. We also compute in closed forms the one and two-point functions and the explicit form of the ground state. The degeneracy structure of the ground state is also discussed.Comment: 15 pages, 1 figur

    Quadratic operators used in deducing exact ground states for correlated systems: ferromagnetism at half filling provided by a dispersive band

    Full text link
    Quadratic operators are used in transforming the model Hamiltonian (H) of one correlated and dispersive band in an unique positive semidefinite form coopting both the kinetic and interacting part of H. The expression is used in deducing exact ground states which are minimum energy eigenstates only of the full Hamiltonian. It is shown in this frame that at half filling, also dispersive bands can provide ferromagnetism in exact terms by correlation effects .Comment: 7 page

    Evolutionary implications of microplastics for soil biota

    Get PDF
    This is the author accepted manuscript. The final version is available from CSIRO Publishing via the DOI in this recordMicroplastic pollution is increasingly considered to be a factor of global change: in addition to aquatic ecosystems, this persistent contaminant is also found in terrestrial systems and soils. Microplastics have been chiefly examined in soils in terms of the presence and potential effects on soil biota. Given the persistence and widespread distribution of microplastics, it is also important to consider potential evolutionary implications of the presence of microplastics in soil; we offer such a perspective for soil microbiota. We discuss the range of selection pressures likely to act upon soil microbes, highlight approaches for the study of evolutionary responses to microplastics, and present the obstacles to be overcome. Pondering the evolutionary consequences of microplastics in soils can yield new insights into the effects of this group of pollutants, including establishing ‘true’ baselines in soil ecology, and understanding future responses of soil microbial populations and communities.MR acknowledges support from the ERC Advanced Grant ‘Gradual Change’ (694368). UK received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 751699

    Random Spin-1 Quantum Chains

    Full text link
    We study disordered spin-1 quantum chains with random exchange and biquadratic interactions using a real space renormalization group approach. We find that the dimerized phase of the pure biquadratic model is unstable and gives rise to a random singlet phase in the presence of weak disorder. In the Haldane region of the phase diagram we obtain a quite different behavior.Comment: 13 pages, Latex, no figures, to be published in Solid State Communication

    Introduction to Quantum Integrability

    Full text link
    In this article we review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. The associated algebras are essentially described by the Yang-Baxter and boundary Yang-Baxter equations depending on the choice of boundary conditions. The relation between the aforementioned equations and the braid group is briefly discussed. A short review on quantum groups as well as the quantum inverse scattering method (algebraic Bethe ansatz) is also presented.Comment: 56 pages, Latex. A few typos correcte

    Implementation of Spin Hamiltonians in Optical Lattices

    Full text link
    We propose an optical lattice setup to investigate spin chains and ladders. Electric and magnetic fields allow us to vary at will the coupling constants, producing a variety of quantum phases including the Haldane phase, critical phases, quantum dimers etc. Numerical simulations are presented showing how ground states can be prepared adiabatically. We also propose ways to measure a number of observables, like energy gap, staggered magnetization, end-chain spins effects, spin correlations and the string order parameter

    Entanglement study of the 1D Ising model with Added Dzyaloshinsky-Moriya interaction

    Full text link
    We have studied occurrence of quantum phase transition in the one-dimensional spin-1/2 Ising model with added Dzyaloshinsky-Moriya (DM) interaction from bi- partite and multi-partite entanglement point of view. Using exact numerical solutions, we are able to study such systems up to 24 qubits. The minimum of the entanglement ratio R \equiv \tau 2/\tau 1 < 1, as a novel estimator of QPT, has been used to detect QPT and our calculations have shown that its minimum took place at the critical point. We have also shown both the global-entanglement (GE) and multipartite entanglement (ME) are maximal at the critical point for the Ising chain with added DM interaction. Using matrix product state approach, we have calculated the tangle and concurrence of the model and it is able to capture and confirm our numerical experiment result. Lack of inversion symmetry in the presence of DM interaction stimulated us to study entanglement of three qubits in symmetric and antisymmetric way which brings some surprising results.Comment: 18 pages, 9 figures, submitte

    Nonlinear integral equations for finite volume excited state energies of the O(3) and O(4) nonlinear sigma-models

    Full text link
    We propose nonlinear integral equations for the finite volume one-particle energies in the O(3) and O(4) nonlinear sigma-models. The equations are written in terms of a finite number of components and are therefore easier to solve numerically than the infinite component excited state TBA equations proposed earlier. Results of numerical calculations based on the nonlinear integral equations and the excited state TBA equations agree within numerical precision.Comment: numerical results adde
    corecore